SAFAL EDUCATION ACADEMY STANDARD – XI MATHS

[Chapter- Sets, Binomial Theorm, Inequality, Complex Number, Sequence - Series]

TIME: 1.0 Hr	MARKS : 40
NAME :	Marks Obtained :

Q - 1 Solve the following

1	Convert complex number $-\sqrt{3}+i$ in polar form.
2	Find the modulus and principal argument of $(2-3i)$.
3	If cube roots of unity are 1, w and w^2 , then find the value of $(1 + w - w^2)^{32}$.
4	Find square root of complex number $3 + 4i$
5	Prove that $(1-\omega+\omega^2)(1+\omega-\omega^2)(1-\omega-\omega^2) = 8.$
6	The sum of three numbers in A.P. is 51 and the product of their extremes is 273. Find the numbers.
7 W	Insert 4 arithmetic means between 3 and 23. www.sarare uucationacade my.in
8	In an arithmetical progression, the sum of p terms is m and the sum of q terms is also m . Find the sum of $(p+q)$ terms.
9	The ratio between the sum of n terms of two A.P.'s is $(7n + 1)$: $(4n + 27)$. Find the ratio of their 11th terms.
10	Solve the linear inequality $ x-2 \ge 6$

Contact: +919898499773

11	Solve and represent the solution on a number line. $5(2x-7)-3(2x+3) \le 0, 2x+19 \le 6x+47$
12	Solve

$$\frac{x^2 - 2x + 3}{x^2 - 4x + 3} > -3.$$

- If the coefficients of x^2 and x^3 in the expansion of $(3 + ax)^9$ are the same, find the value of a. [SC]
- In a binomial expansion, $(x + a)^n$, the first three terms are 1, 56 and 1372 respectively. Find values of x and a.
- The 2nd, 3rd and 4th terms in the expansion of $(x + y)^n$ are 240, 720 and 1080 respectively; find the values of, x, y and n.
- Using binomial theorem, expand $[(x+y)^5+(x-y)^5]$ and hence find the value of $[(\sqrt{3}+1)^5-(\sqrt{3}-1)^5]$.
- Find the coefficient of x^5 in the expansion of $(1 + 2x)^6 (1 x)^7$.
- If A and B are two sets such that n(A) = 17, n(B) = 23 and $n(A \cup B) = 38$, find $n(A \cap B)$.

ACADEM

19 Shade the regions as directed?

- 20 If $n(\xi) = 600 \ n(A) = 460$, n(B) = 390, and $n(A \cap B) = 325$, draw a Venn diagram to find:
 - (i) $n(A \cup B)$

W

- (ii) $n(A \cup B)'$
- (iii) n(A-B)

ANSWERS

 $= 2\left(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}\right)$

2 $\sqrt{13}$ argument $\theta = -\alpha$ $= -\tan^{-1}\frac{3}{2}$

 $= 2^{32}$. w

 4 $\pm (2+i)$

5 Proved sum

the numbers are 13, 17, 21.

⁷ 7, 11, 15 and 19.

8 0 (zero)

ACADEMY

% 148:111 faleducationacademy.in

Hence, the solution set of the in equation is $[-\infty, +4) \cup [8, \infty)$.

 $[-\infty, +4) \cup [8, \infty)$.

 $11 \quad -7 \le x \le 11 \qquad \text{or} \qquad x \in [-7]$

The graph of inequalities on the number line is represented as

12 $x < 1 \text{ or } \frac{3}{2} < x < 2, x > 3$

13	9	
	7	

14
$$n = 8, x = 1, a = 7$$

$$n = 5$$
 $x = 2, y = 3.$

18 2

20

Sol. Given $n(\xi) = 600$, n(A) = 460, n(B) = 390, $n(A \cap B) = 325$ (i) $n(A \cup B) = n(A) + n(B) - n(A \cap B) = 460 + 390 - 325 = 525$

The given sets are intersecting sets. The Venn diagram is as shown.

(ii)
$$n(A \cup B)' = n(\xi) - n(A \cup B) = 600 - 525 = 75$$

iii)
$$n(A-B) = n(A) - n(A \cap B) = 460 - 325 = 135$$

